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Abhstract

The concept of desingularization in three-dimensional boundary integral computations isreexamined. The boundary integral equation is desingularized by moving the singular points
away from the boundary and outside the problem domain. This allows the surface integrals,
which become nonsingular, to be evaluated by simpler techniques and speeds the computa-
tion. The effects of the distance of desingularization on the solution and the condition of the
resulting system of algebraic equations are studied for both the direct and indirect versions
of the desingularized boundary integral methods. Computations show that a broad range of
desingularization distances gives accurate solutions with significant savings in the computa-
tion time. The desingularization distance must be carefully linked to the mesh size to avoid
problems with uniqueness and ill-conditioning. As an example, the desingularized indirect
approach is used to study unsteady nonlinear three-dimensional gravity waves generated by
a moving submerged disturbance; minimal computational difficulties are encountered at the
truncated boundary.

* 1 Introduction

1 Boundary integral equations (BIE) provide a powerful method for the solution

of linear, homogeneous boundary value problems. The method employs a funda-

1 mental solution, which satisfies the differential equation (and possibly part of the

boundary conditions), to reformulate the problem as an integral equation on the

boundary. In conventional BIE formulations, singularities of the fundamental solu-

tion are placed on the domain boundary. This requires special evaluation of singu-

lar integrands, which can result in costly numerical calculations. In time-dependent
*'t ?Aj. [i

nonlinear free surface problems,1-3 a boundary integral problem is solved at each - U.
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time step. Since most of the computation time is devoted to the boundary integral

I problem, an effective solution method is critical in the time-marching procedure.

When the singularity of the fundamental solution is placed away from the

boundary and outside the domain of the problem, a desingularized boundary inte-

gral equation (DBIE) is obtained. We will show two advantages to this desingu-

larization: a more accurate solution can be obtained for a given truncation, and a

numerical quadrature can be used to reduce the computational time to obtain the

I algebraic system representing the discretized boundary integral problem. There

are two types of nonsingular boundary integral formulations: direct and indirect.

In the direct method, Green's second identity is used to derive the boundary inte-

gral equation, and the solution of the problem is obtained directly by solving the

boundary integral equation. In the indirect method, a boundary integral equa-

I tion for the singularity strength is formulated, where the singularity distribution

is outside the problem domain. (When the boundary integral formulation is sin-

gular, the direct and indirect method can be shown to be equivalent 4 .) These two

methods are formulated in the following section.

The first use of a desingularized method is the classical work by Von Kirmin'

which determines the flow about axisymmetric bodies using an axial source dis-

tribution. The strength of the source distribution is determined by the kinematic

houndary condition on the body surface. Kupradze6 proposes locating the bound-

ary nodes on an auxiliary boundary outside the problem domain. Heise studies

some rm:erical properties of integral equations in which the singular ) nts are Oi
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an auxiliary boundary outside the solution domain for plane elastostatic problems.

I By applying Green's theorem to the solution and a simple wave source with the

3 singular point lying inside the body (i.e., outside the problem domain) and using a

bilinear expansion of the source, Martin s obtains unique solutions of the so-called3 "null-field equations for the water wave radiation problems." Han and O~son 9 and

Johnston and Fairweather 1" use an adaptive method in which the singularities are

I located outside the domain and allowed to move as part of the solution process.

3 This adaptive method requires considerably fewer singularities than the number of

boundary nodes. but it results in a system of nonlinear algebraic equations for both

the strength and the location of the singularities. All these studies can be classi-

fied as nonsingular methods and show a considerable reduction in the computation

I time.

3 The most complete discussion of a desingularized technique is given by Webster",

who uses a triangular mesh of a singularity distribution (a simple source, in this

case) placed somewhat inside the surface of an arbitrary, three-dimensional smooth

body to find the external potential. The integration is performed analytically for

each triangle using a linear distribution of singularity strength. These integra-

I tions require evaluation of (logarithmic and arctangent) transcendental functions.

From the numerical results, Webster concludes that "Submergence of the singular-

itv sheet below the surface of the body appears to improve greatly the accuracy,

3 as long as the sheet is not submerged too far.- This indicates that for a certain

discretization of the body surface. one may obtain a more accurate solution by

I the nonsingular formulation than bv the singular foriiulaion. Although \Vebstcr
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did not attempt it, a simple numerical quadrature can be used if the distance of

I desingularization is sufficiently large. This will significantly reduce the computa-

tional effort required to obtain the algebraic system representing the discretized

boundary integral problem.

U Although nonsingular formulations of the indirect method have grown popular

recently, few studies on the desingularized direct method have been reported, es-

pecially for three-dimensional problems. Schultz and Hong 12 obtain a nonsingular

I direct formulation by moving the singularity in the Cauchy's integral away from

the boundary in two-dimensional potential problems. Their results also show the

advantages of the nonsingular formulation. They also use an overdetermined sys-

tem combining the real and imaginary parts of Cauchy's theorem or using "extra.

evaluation points away from the boundary contour. This overdetermined system

I can exhibit higher-order convergence than the determined system from the real or

imaginary part of Cauchy's theorem.

Fewer investigators report on applications with boundaries extending to infinity.

especially for wave problems. Jensen, Mi and S6ding "3 solve the steady nonlinear

ship wave problem by the indirect method using a simple source distribution above

a free surface, with minimal difficulties at the truncated boundary. W\:hile they use

an upwinding technique as a form of the radiation condition. we find that the

unsteady problem can be described by a technique that uses no special treatment

for fixed time at the truncated boundary, as long as a desingularized method is

I used.

I 4I
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After formulating the two desingularized methods in section 2. we then examine

I the effect of the distance of desingularization on a simple problem with an infinite

plane boundary. The convergence of the method with respect to mesh size and the

computational time are compared to find "optimum" desingularizati6n distances.

We then use this method to calculate the unsteady nonlinear waves generated by

a source-sink pair moving below a free surface.

2 Desingularized Boundary Integral Method

The Laplace equation is the governing equation in a domain D bounded by F. We

assume that a Dirichlet condition is imposed on part of the boundary Fd and a

Neumann condition on the remaining boundary F:

A= 0 (in D), (1)

0 = (on rd), (2)I0
= x (on to), (3)

3 where 6. and X are known functions and J is the outward norrnra2 to the boundary

r.. If the boundary extends to infinity, a far-field condition is required.

The desingularized boundary integral method separates the integration and

I control (i.e., evaluation) surfaces, one of which is the boundary of the problem. In

the direct method. the boundary of the problem is the integration surface, while

in the indirect method. the boundary is the control surface.

I
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2.1 Direct method

The boundary integral equation in the direct method is derived from Green's sec-

* ond identity:

f Slio O <- OA,- si dDo-f-f 'a) dr =o, (4)
which holds for any two functions with second derivatives continuous in D and the

I boundary F. If 0 is the solution and ?k is chosen as
1()

lxP -1)

with its singular points YP outside D and 1, on F, the volume integral in (4)

becomes zero. We then have

I J= ( _ _) o. (6)

Applying the boundary conditions (2) and (3) to (6) and moving the known quan-

tities to the right-hand side give:

a J dT - f - dF

I
r. J n lip -4 Y, _ , ,) + i/, _ !,,, ,- iq a

The kernels are nonsingular since 4p and Yq never coincide. The integral equation
I (7) is solved for 4? on F , and Oq/On on Fd.

2.2 Indirect method

The indirect method forms a solution by integra'ing a simple source distribution

I over some surface P. outside the problem domain. By applying the boundary

* 6
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conditions, (2) and (3), we obtain a boundary integral equation for the unknown

I strength of the singularities, a(Y,),

3 J fudQ () 1 (on rd) (8)
VI- Y.1

Jn-()' (b . ) dn = x(Z) 
(on r), (9)

I where 9 , is the integration point on the surface fl outside D, i, the control point

on F and, again, - represents the derivative normal to F. Once the singularity

strength is solved. the solution for 0 can be determined. The term 1/1:F, - i.1 can

easily be replaced by other higher-order singularities (dipoles. etc.) with little ad-

ditional computational effort since the integraLs are nonsingular and are evaluated

I numerically.

I 2.3 Difficulties introduced by desingularization

Desingularization results in a Fredholm integral equation of the first kind which can

lead to uniqueness and completeness problems of the solution as manifested in the

ill-conditioning of the resulting algebraic system if the desingularization distance

3 is not properly chosen. Uniqueness can be a serious problem for the direct method

since the solution of the algebraic system is solution of the problem. However,

we can accept multiple constructions (different values of a') of the same 6 with

the indirect method. Webster11 shows that the nonsingular formulations are not

significantly less well conditioned than singular formulations and that completeness

3 is assured if the singularities of the numerical method are placed closer to the

I7
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surface. than any real singularity. He also discusses strategies for choosing the

U desingularization distance for closed bodies. The method we describe here uses a

desingularization distance that is related to the local mesh size (described in more

detail in section 3). As the meshes become finer, the singular points approach the

boundary. In the limit, the nonsingular formulation is consistent with the singular

formulation. For example, the desingularized kernel (aithough never singular) can

I be shown to have pointwise convergence everywhere except at the singular point.

The numerical integration error will converge if the singularity approaches the

boundary at a sufficiently slow rate as the mesh is refined (as shown in Section

3). Thus, the properties of the singular boundary integral equations still apply for

both methods.I
Desingularization increases the condition number of the resulting linear system.

I In most three-dimensional computations, the large number of unknowns requires

an iterative solution of the linear system. As the condition number increases, one

can expect a loss in accuracy or an increase in the number of iterations. Then there

appears to be an "optimum" desingularization distance. If the sir.gularity is too far

from the boundary the linear system will be pcorly conditioned. and uniqueness

I and completeness problems occur. If the singularity is too close to the boundary,

numerical integration of the singular terms is suspect and the solution may not be

as accurate, even if "exact" integration is used. Unfortunately. little guidance in the

selection of the desingularization is available except for Webster's" discussion for

axisymmetric bodies. If the solution is sensitive to the desingularization distance.

I the nonsingular formulation would not be very practical. We will show that this

*
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is not the case in the following examples.

* 3 Examples

First, we test the numerical performance of the desingularized bounda!., integral

I methods on a problem in which the potential is generated by a dipcle below an

infinite flat plane with 0 = 0. This simple problem has an exact solution formed by

the dipole and its image about the flat plane. This problem represents the solution

to the first time step of nonlinear waves caused by an impulsive disturbance of

a dipole under water. We then apply the method to time-dependent nonlinear

waves caused by an underwater disturbance (a moving source-sink pair in our

I calculation).

The direct and indirect methods ar, compared for the simpler example. In the

direct method, the boundary is divided into rectangles, and a solution is sought

at the nodes. Since the kernels are nonsingular, the integrals can be evaluated

using Gaussian quadrature, where the solution is assumed to be bilinear over each

SI rectangle. In the indirect method, the integrals of the singularity distribution

(8) and (9) may be replaced by a summation of isolated singularities without an

apparent loss of accuracy when the desingularization distance is appropriate. This

does not require integration and mapping in numerical calculations. Therefore, the

computations will be less complex and time consumi:g than in the direct method.I
A collocation method is used to solve both formulations of the boundary integral

equations: In the direct method we satisfy the Green theorem at chosen points,

I9
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while in the indirect method we satisfy the boundary conditions at the collocation

I points. We propose that the distance of a singular point from the boundary be

* given by

Ld = ld(D) ' , (10)

I where Id is a constant, D.. is the local mesh size (usually the square root of the

local mesh area) and a is a parameter that must be chosen carefully.

To test the convergence with respect to mesh ref nement, we evaluate the poten-

tial, wlich is due to a known constant normal dipole distribution within a square,

flat surface (-1 < x < 1, -1 < y < 1, z = 0), at a point with a distance given

bY (10) above the center of the surface. The surface is subdivided into a square

rnesh and a 2 x 2 Gaussian quadrature is used. A third-order convergence should

be found assuming the integrand is nonsingular and is independent of the mesh.

Although moving the singular points makes the integrand nonsingular, Eq. (10)

makes the integrand depend on the mesh size, and hence third-order convergence

is not assured. Fig. 1 shows the convergence of tL? numerical integration for three

values of a: 0, 1/2 and 1. As long as a < 1. third-order conve:rence is recovered

although the numerical integration error increases with a. On the other hand, a

should be greater than 0 for the uniqueness and completeness properties of the

solution of the integral equation. Therefore, an appropriate a lies in between 0

and 1. In subsequent calculations, we choose a value of a = 1/2.

In the results that follow, a Generalized Minimal Residual Method (GIRES)' 4

is used to iteratively solve the system of equations. We find this method to be

110
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generally twice as fast as a standard conjugate gradient routine for nonsymmetric

I matrices. A sufficiently small value of the convergence tolerance is chosen so that

it introduces negligible error in comparison to that introduced by truncation. The

computations are carried out on an Apollo DN10000 workstation using 16 digit

I arithmetic.

I 3.1 A dipole below a € =0 infinite flat plane

In this example, a Dirichlet condition, 0 = 0, is imposed on the z = 0 plane. A

dipole of unit strength is located at .i,(0, 0, -1), and the direction of the dipole

coincides with the x axis. The normal derivative a/0an is sought on z = 0.

In the direct method, the boundary integral equation for this problem is derived

from Green's second identity. Since the surface at infinity does not contribute, we

3 obtain
I !L CI 1 _d , P11)

In N V - F91 r -lip - 4ol

where lp is the control point outside D and Yq the integration point on rd. The

I computational domain is discretized into a uniform square mesh defined by N

nodal points after truncating the z = 0 plane (rd) at x = ±R, and y = R.,, with

a symmetry condition on y = 0. The integrations are performed using a bilinear

I distribution of i9O/an and using a 2 x 2 Gaussian quadrature. The control points

are placed directly above the nodal points at a distance Ld =/1(zx)', where 6x is

the mesh spacing.

I
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In the indirect method, the potential is formed byI-1 N a

() = j 0= 1 (12)

Uwhere i-,i are the source points above z = 0. The boundary condition 4) 0 on

z = 0 results in

N i  1 ___(i3)

j=1 47 2+ y2 + (Z l2+3/2'

where Yc = (xc,yc,zc) is the control point on z = 0.

The exact solution is

I(XyZ) = 1 3/2 (14)
4,- (2 + y 2 + (z+)2)/2 + 47r (X2 + y2 +(z 1)2)

I The exact solution for the normal velocity on the z = 0 plane then becomes

I 3)(c )o = 21r (X2 + Y2 + 1)5/2 (15)

The results of the normal velocity are compared to (15) by the RMS error, defined

by

= - (16)

The mesh configuration is shown in Fig. 2.

Fig. 3 shows the RMS errors for this example using the direct and indirect

methods for three different values of N while varying desingularization distances.

The direct method using a 2 x 2 Gaussian quadrature shows a rapid drop in error

near zero desingularization followed by increasing error as Id increases. In the

I indirect method (using isolated sources i, rigth above the control points i,) , the

* 12
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solution blows up for Id = 0 because the integration and control points coincide.

I However, as Id increases, the errors decrease rapidly and the solutions are rather

U insensitive to the variation of Id for quite a large range. Eventually, Id becomes too

large for the given truncation to represent the second term in (14) well, and the

errors start to increase.

We have performed some limited computations where the control and nodal

points are staggered. These staggered computations give similar results for opti-

I mal desingularization, but give significantly better results than the nonstaggered

algorithm only when the desingularization is very small. Since staggering strategies

are difficult to choose and only marginal improvement is obtained, we avoid the

staggered method. We also tried using a surface distribution of sources above the

z = 0 plane in the indirect method for this problem. This is similar to Webster's

I method" except that the integrals over the source surface are performed using a

2 x 2 Gaussian quadrature. As seen in Fig. 4, the results are better than those

of isolated sources for a large range of Id (from 0.1 to 3.0). This can be expected

since the use of isolated sources implies using a rougher quadrature for the inte-

grals over the source surface. However, we found that the condition number of

I the resulting system of equations using a surface distribution of sources is greater

than that using isolated sources by an order of 100. Since it does not improve

the optimum accuracy but takes considerably longer to form the algebraic system

and the iterative solution will take longer for the distributed source, we find that

nonstaggered, isolated sources are prefered.

I
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A comparison of different techniques used to evaluate the influence function

_ for the direct method is given in Fig. 5. As expected, for small Id the error us-

ing the Gaussian quadrature is larger than the error using Newman's analytic

integration' 5 because the integration error dominates the accuracy of the solution.

As Id increases, the Gaussian quadrature integrates the smoother integrands ac-

curately, and the results merge with those of Newman's approach for all ld. It is

I foituitous that in the middle range of 1d, the results of the Gaussian quadliture

show less error than those of Newman's approach-the discretization and numeri-

cal quadrature errors apparently tend to cancel each other. A more accurate 3 x 3

Gaussian quadrature brings the results closer to those of Newman's approach, as

expected. Although not shown here, increasing the number of nodes N also brings

I the results using the Gaussian quadrature closer to those of Newman's approach.

3 When using the direct method, the singular formulation (Id = 0 in Fig. 5) gives

the least error when analytic integration is used. Since the direct and indirect

versions are equivalent if the influence function is evaluated analytically for the

I singular case, we expect the singular indirect method to be equivalent to the sin-

gular direct method. However, desingularization in the indirect method greatly

reduces error as can be seen in Fig. 3 and Fig. 4. Desingularization is apparently

more beneficial in the indirect method because the solution of many problems can

be represented accurately by a finite number of some singularities located outside

the problem domain. In this example, one negative image dipole above the z = 0

plane results in the exact solution. Desingularization may be more problem (or

geometry) specific for the indirect method. The direct method seems to be less

* 14
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sensitive to desingularization.

The effect of desingularization on the condition number of the system of linear

equations is shown in Fig. 6 for the direct and indirect methods. The condition

number increases exponentially with Id. However, a poorly conditioned system

I does not necessarily imply an inaccurate solution. In fact, minimal error occurs

around 1d = 3.0 in the indirect method, where the condition number is quite large.

The increased condition number is likely to increase the nomber of iterations.

3 Fig. 7 compares the ratios of CPU time by GMRES to that by an LU algorithm

for the solution as a function of 1d for N = 231. The LU algorithm takes about 3.5

seconds to solve the system. An error tolerance f for the least squares residual of

the equations needs to be specified when GMRES is used. We find that f = 10' is

sufficiently small in all the computations performed. With the use of this tolerance,

the CPU time by GMRES is less than that by the LU algorithm for !d < 1.5.

Newman's approach requires about 22 seconds to set up the matrix while the 2 x

a2 Gaussian quadrature requires only about 6.4 seconds, for a saings of about 70

1 percent. However, the CPU time for solving the system varies from 3.0 seconds to

4.0 seconds as Id changes from 0.8 to 3.0. Even in the worst case. ld = 3.0, we gain

a total reduction in CPU time of about 60 percent over the singular formulation

(with Id = 0 and Newman's approach). In the indirect method, the CPU time for

the matrix set up is only about 1.3 seconds, and the CPU for the solution of the

3 system varies from 1.7 to 4.0 seconds. The total CPU time is reduced by about S0

percent with the indirect method for this truncation. When the desingularization

I distance is small (e.g., Id < 1.5), a larger c does not result in a significant difference

* 15
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in RMS error, see Fig. 8. However, the CPU time is significantly reduced, see Fig. 9.I
Fig. 10 shows the effect of truncating the infinite plane. The computational

domain is extended by adding uniformly sized meshes. Both the direct and indirect

methods converge quadratically with respect to the extent of the computational

domain for this problem, as expected. Both methods also converge algebraically

(approximately linearly) with respect to N, as can be seen in Fig. 11, in which the

computational domain remains unchanged while the mesh size varies. The mesh

convergence is algebraic for all Id (not shown here).

3 Fig. 12 shows the error distribution along the x axis for both methods. Larger

oscillations in the solution by the direct method are observed at the edge of the

computational domain. This may be due to the neglecting of the contribution

from the integrals over the far-field closure in the direct method, which very likely

results in a strong global effect on the accuracy of the boundary integral equation

itself. In the indirect method no integrals are required over the boundary; the

boundary condition is enforced within the computational domain, and the singu-

3 larities individually satisfy the far-field condition. Thus, one may expect the effect

due to the failure of satisfying the boundary condition outside the computational

domain to be smaller than the effect due to the neglecting of the far-field closure.

I 3.2 Waves generated by a source-sink pair moving below a free surface

For an irrotational, incompressible flow in an ideal fluid, the Laplace equation

is the governing equation for the velocity potential 6. On the free surface. the

I nonlinear dynamic and kinematic boundary conditions are

* 16
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ID4 1
DO 1f+ V&V47 (17)

and

(18)
Dt

where f = (xf,yf, z1) is a position vector of the fluid particle on the free surface

and is the material derivative following the fluid particle. The z axis is taken as

I positive upwards. Initially, there is no flow and the free surface is flat. The flow is

generated by the motion of a source-sink pair that starts from rest. The speed of

the disturbance pair is quickly brought to a steady value by a smooth function of

time to avoid high-frequency content. The problem has been nondimensionalized

by taking the depth of the disturbance h and the gravitational acceleration g to

I be unity.

The free surface boundary conditions are integrated with respect to time to

update the position of the fluid particles (the nodes) on the free surface and their

velocity potential. The velocities of the fluid particles on the free surface at each

time step are determined by the desingularized boundary integral method. The

location of the singularities x, are moved at each time step to a distance Ld away

* from the nodes and normal to the surface (the normal direction is approximately

determined assuming that it is perpendicular to the two vectors defined by the

diagonal lines of the four adjacent nodal points). Material movement of the nodes

is beneficial for this problem because they tend to naturally cluster near crests

* 17
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where curvature of the surface and velocity gradients are large. Since nodes cluster

I at these points, the desingularization distance also decreases in a beneficial way as

prescribed by (10). We use the indirect method with isolated sources because of

its computational advantages and simplicity discussed in the previous sections. An

additional advantage of the indirect method for this problem is that the velocities

can be obtained directly once the strength of the singularity distribution is known,

I while the direct method requires numerical differentiation to obtain the tangential

velocities.

The potential is expressed as a sum of 1) the source-sink disturbance pair at

a distance h below the undisturbed free surface, 2) the image disturbance above

the undisturbed free surface, and 3) a sum of N sources of unknown strength in

an array at distance Ld above the disturbed free surface. The far-field condition

I is better satisfied when the image of the disturbance is used in the construction of

the solution. The "integral" equation for the unknowns a, is

N iI ~a- =

-a(t) _ (t) -a(t) _ (t) (19)
I~fiaourceI I 'fIda i , I I. - ikI (1

where O(If) is known and a(t) is the strength of the disturbance. After the ai are

deternined, the velocities of the fluid particles on the free surface can be calculated.

A fourth-order Runge-Kutta-Fehlberg method is used in the nonlinear free surface

integration.

I
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The method is first applied to waves generated by a sufficiently small distur-

I bance such that linear wave theory is a good approximation. We compare the

results of the present method using fully nonlinear free surface conditions to an

"exact" solution computed from a time-dependent Green function for a Kelvin

wave that satisfies the linearized free surface condition'6 . Then we study nonlin-

ear free surface waves generated by a stroLger disturbance. In both zases, the

I disturbance (the source and sink pair lying along a horizontal line) moves hor-

izontally. The distance between the source and sink is 0.1. The pair moves at

speed V(t) = Fr(1 -e 4 t) with the midpoint between the source and sink initially

located at point (5.0,-1). Fr is the Froude number defined by V/V'_T, where V

is the terminal velocity of the disturbance. Fr is chosen to be 1 in this example.

I The free surface initial mesh grid extends from 0 < z < 20 and 0 < y < 7.5 (with

a symmetry plane at y = 0) and is initially divided into an 40 x 15 mesh. The

nodes in the z direction are equally spaced while the distance between the two

adjacent nodes in the increasing y direction increases by 10 percent. The nodal

points serve as the material points. The time-marching is conducted following the

nodal points. The isolated sources are placed approximately perpendicular from

the nodal points at a distance determined by (10), where the local mesh size D,

is the square root of the average area of four adjacent meshes, Id is 1.0 and a is

0.5. The magnitude of the disturbance for both the source and the sink is defined

by a(t) = uo(l - e 4 t). where o, = 0.05 for the linear case and o = 0.75 for the

the nonlinear case. The time step is 0.2 in the time-marching procedure.

I Fig. 13 shows the wave elevations along the symmetry plane (y = 0) at t = 1.0

I
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by the nonlinear calculation and the "exact" linear calculation (see King 6 ) with

I the weaker disturbance. The time convolution integrals in the linear calculation

are performed numerically. As seen, the nonlinear and linear results agree very

well. Independent computations using: a) a smaller computational domain (with

the same mesh spacing within 0 < x < 15 and 0 < y < 7.5), b) finer mesh

grids (80 x 15 and 40 x 30 with the same computational domain) and c) doubling

I the time increment, result in negligible difference for the nonlinear calculation.

This indicates that even for the small disturbance example studied here, the small

differences in Fig. 13 are primarily due to nonlinear effects.

I Fig. 14 shows the wave elevations along the symmetry plane at t = 1.0 for the

nonlinear case. The differences between the nonlinear and linear results in this case

are due to the nonlinear effect of the free surface conditions. The figure indicates

that nonlinear effects are stronger near the second crest. A three-dimensional view

of the nonlinear waves at t = 1.8 is given in Fig. 15.

To study artificial effects (such as unexpected numerical wave reflection) caused

I by far-field truncation on longer time simulations, the weaker disturbance was sim-

ulated on the two differently sized computational domains mentioned above with

identical mesh spacing. Fig. 16 shows two marks on the undisturbed free surface

indicating the edges of the two computational domains. Very small differences are

seen in the two computations before the wave front hits the edge of the smaller

I domain. Moreover, even after the wave front passes this edge, significant differ-

ences are not apparent until the first crest passes the edge. After that, the error
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starts to propagate into the entire domain. This differs from our attempts to solve

the identical problem using the direct method (not shown here) where extrane-

ous reflections were noticed almost imediately at the truncated boundary where a

radiation-type boundary condition (in this case 4 = 0) had to be imposed. The

small differences in the computations of Fig. 16 are remarkable, especially consid-

ering that the indirect method using material nodal points does not require any

spatial derivatives and hence the nodes on the edge of the computational domain

do not require any special treatment such as one-sided derivatives, not to mention

the radiation-type boundary condition. It appears that the indirect method would

allow the use of a considerably smaller computational domain.

I 4 Conclusions

The nonsingular formulation significantly reduces the time required to compute

the matrix of influence functions. The resulting system of linear equations is still

adequately well conditioned to allow efficient iterative solution of the linear alge-

braic system. Accurate solutions can be obtained by the desingularized boundary

method for a large range of desingularization distances on the order of the mesh

size (near Id = 1). It was also found that the indirect method is more efficient than

the direct method. It is easy to code and takes less computation effort. In addi-

tion, the indirect method appears to perform better in problems with boundaries

extending to infinity. Nonlinear wave calculations using a time-marching proce-

dure were greatly facilitated using the desingularized boundary integral method

with remarkably small numerical reflections at the computational boundaries.
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